UNIVERSITY OF MADRAS SYLLABUS

M.Sc. Mathematics

(for the academic year 2021-2022)

S.No	Faculty Name	QUALIFICATION
1	Mrs.K.Malligeswari	M.Sc., M.Phil
2	Mrs.J.Prabha	M.Sc., M.Phil, B.Ed, SLST '90
3	Mrs.P.P.Sharmishta	M.Sc., M.Phil, SET
4	Mrs.N.K.Vinodhini	M.Sc., M.Phil, SET
5	Mrs.K.Sheela	M.Sc., M.Phil, SET
6	Mrs.R.Mahalakshmi	M.Sc., M.Phil
7	Mrs.C.D.Kalpana	M.Sc., M.Phil
8	Mrs.R.Mary Mercy Priya	M.Sc., M.Phil
9	Dr. M.Arunma	M.Sc., M.Phil, PGDAOR, Ph.D, SET
10	Dr .S.Geetha	M.Sc., M.Phil, Ph.D, SET
11	Mrs.S.Gayathri	M.Sc., M.Phil, PGDCA, SET
12	Dr .V.Sathyavathy	M.Sc., M.Phil, M.Ed, Ph.D, SET
13	Mrs.B.Kavitha	M.Sc., M.Phil, B.Ed, SET

M.Sc. DEGREE COURSE IN MATHEMATICS SYLLABUS <u>Semester –I</u> SUBJECT NAME: ALGEBRA-I SUBJECT CODE: MFF1A

COURSE OBJECTIVES:

- 1. To develop a strong foundation in linear algebra that provide a basic for advanced studies.
- 2. To Study of Linear Transformations, Algebra of Polynomials, Invariant space and their properties.
- 3. Give particular attention to canonical forms of linear transformations, diagonalizations of linear transformations, matrices and determinants.

Title of th	e Course	ALGEBRA-I							
Paper Nu	mber	Ι							
Category	Core	Year	I	Credits	4	Course			
		Semester	I			Code			
Pre-requis	ite	An introduc	tory course	in Abstract	Algebra	•	•		
Course Out	Course Outline		oup actions o	n a set, Sylov	w theorems -	Applications	of Sylow		
		theorems.							
		Chapter 3:							
		-			rom J.B. Fral	2			
					elian groups-	Modules			
		Chapter 2:							
		Chapter 4:			om I.N. Herst	-			
					Canonical forr	ns –Triangula	ar form -		
		Nilpotent transformations.							
			Sections 6.4, 6.5 from I.N. Herstein						
			<i>i</i> :Jordan form - rational canonical form.<i>i</i> : Sections 6.6 and 6.7 from I.N. Herstein						
		UNIT-V: Trace and transpose - Hermitian, unitary, normal transformations, real quadratic form.							
					11 (Omit 6)	0) from IN 1	Jorstoin		
Recommen	dod Toyt	Chapter 6 : Sections 6.8, 6.10 and 6.11 (Omit 6.9) from I.N. Herstein1. J.B. Fraleigh, A first course in Abstract Algebra, 5th edition.							
Kecommen	ucu Text		0		Edition) Wil				
Reference H	Rooks	1. M.Artin, 2	-	.		09,2002.			
Kerer ence I	JUONS		0						
		2. P.B.Bhattacharya, S.K.Jain, and S.R.Nagpaul, <i>Basic Abstract Algebra</i> (II Edition) Cambridge University Press, 1997. (Indian Edition)							
		Edition) Car	nbridge Univ	versity Press,	1997. (India	n Edition)			
		3. I.S.Luther	and I.B.S.P	assi, Algebra	, Vol. I – Gro	ups(1996); V	ol. II		
		Rings(1999)	, Narosa Pub	lishing Hous	se , New Delh	i			
		4. D.S.Dummit and R.M.Foote, <i>Abstract Algebra</i> , 2 nd edition, Wi							
					& II W.H.Fre g Company, N		also		

LEARNING OUTCOMES:

- 1. Understand the basic concepts of determinants and its additional properties.
- 2. Recognize the concepts of Invariant subspaces and diagonalization process.
- 3. Analyze canonical Form, Jordan Form and Rational canonical Form.

SUBJECT NAME: REAL ANALYSIS -I **SUBJECT CODE: MFF1B**

- To provide a deeper and rigorous understanding of functions of bounded variation.
 To understand sequences of functions ,infinite series and infinite product
- 3. To provide deep insight into the concept of Riemann-Stieltjes integral..

Title of the	Course	REAL ANALYSIS –I						
Paper Nur					_			
Category	Core	Year	1	Credits	4	Course		
		Semester	1			Code		
Pre-requisi	te	An introdu	ctory Real A	nalysis cou	rse	•	-	
Course Outl	ine					ntroduction - I		
						riation - Tota	l variation -	
		1	1 2	variation - T			1 1	
						variation expr ous functions		
		variation.	i two increas	sing function	s - Comm	ious functions	of bounded	
			5 : Sections	6.1 to 6.8				
		-			onal conver	gence - Dirich	let's test and	
						s theorem on c		
		convergent s						
				8, 8.15, 8.17,				
						troduction - No		
						ear Properties		
		by parts- Change of variable in a Riemann - Stieltjes integral - Reduction to a Riemann Integral – Euler's summation formula - Monotonically increasing						
		integrators, Upper and lower integrals - Additive and linearity properties of						
		upper and lower integrals - Riemann's condition - Comparison theorems.						
		Chapter - 7 : Sections 7.1 to 7.14						
		UNIT-III : The Riemann-Stieltjes Integral - Integrators of bounded variation-Sufficient conditions for the existence of Riemann-Stieltjes						
						nce of Riem - Stieltjes inte		
						fundamental		
						ann integral-S		
						tieltjes integra		
						l sign-Lebesg	ue criteriaon	
				ann integrals	•			
			: 7.15 to 7.2		·/ D 1	4 D 11		
						cts - Double ouble series -		
				-		Aultiplication		
			1 .	nite products		Tuttpileation	or series	
			Sec, 8.20, 8.	-				
			-	-		he Taylor's ser		
		generated by a function - Bernstein's theorem - Abel's limit the						
		Tauber's the		1 0 15 0 10	0.20.0.22	0.22		
				4 9.15, 9.19,				
						onvergence of a standard s		
			-	-		d continuity -		
						vergence of in		

	of functions - Uniform convergence and Riemann - Stieltjes integration – Non-uniform Convergence and Term-by-term Integration - Uniform convergence and differentiation - Sufficient condition for uniform convergence of a series - Mean convergence. Chapter -9 Sec 9.1 to 9.6, 9.8,9.9, 9.10,9.11, 9.13
Recommended Text	Tom M.Apostol : <i>Mathematical Analysis</i> , 2 nd Edition, Narosa, 1989.
Reference Books	 Bartle, R.G. <i>Real Analysis</i>, John Wiley and Sons Inc., 1976. Rudin,W. <i>Principles of Mathematical Analysis</i>, 3rd Edition. McGraw Hill Company, New York, 1976. Malik,S.C. and Savita Arora. <i>Mathematical Anslysis</i>, Wiley Eastern Limited.New Delhi, 1991. Sanjay Arora and Bansi Lal, <i>Introduction to Real Analysis</i>, Satya Prakashan, New Delhi, 1991. Gelbaum, B.R. and J. Olmsted, <i>Counter Examples in Analysis</i>, Holden day, San Francisco, 1964. A.L.Gupta and N.R.Gupta, <i>Principles of Real Analysis</i>, Pearson Education, (Indian print) 2003.

Students will be able to

- 1 .Acquire knowledge of real variable theory for further exploration of the subject for going into research.
- 2. Understand the effect of uniform convergence on the limit function with respect to continuity, differentiability and integrability.
- 3.Learn the theory of Riemann's Stieltjes integrals, to be aquainted with the details of the Total variation and to be able to deal with the functions of bounded variation.

SUBJECT NAME: ORDINARY DIFFERENTIAL EQUATIONS SUBJECT CODE: MFF1C

- 1.To study solutions of linear differential equations with constant and variable coefficients.
- 2.To Understand and able to apply various theoretical ideas that underlined in existence and uniqueness theorems .
- 3.To provide knowledge in Linear dependence and independence, Wronskian etc.,

Title of the Course		ORDINARY	DIFFERE		ATION	IS			
Paper Number			III						
Category	Core	Year	I	Credits	4	Course			
		Semester	I			Code			
Pre-requisite	UG level Ca	Iculus and Diffe	erential Equ	ations					
Course Outline		ear equations w							
	Second order homogeneous equations-Initial value problems-Linear dependence								
	and independence-Wronskian and a formula for Wronskian-Non-homogeneous								
	equation of order two.								
		ections 1 to 6							
		near equations							
	•	s and non-homog	· -						
	-	nihilator method	to solve not	n-nonnogeneo	ous equi	ation.			
		Sections 7 to 11.							
		inear equation v					1		
		broblems -Exister							
		homogeneous ec							
		The Legendre equ	1		1	i vi iui uiiui j			
	Chanter : 3	Sections 1 to 8 (Omit sectio	o n 9)					
		inear equation v			ints				
		er equations wi				Exceptiona	1		
		sel equation .	U	0 1		I			
		Sections 3, 4 an	d 6 to 8 (on	nit sections	5 and	9)			
		istence and uniq							
		n variable separat							
		ns – the Lipschitz ns and the exister			e or the	successive			
		Sections 1 to 6 (
Recommended Text	E.A.Codding	ton, A introductic	on to ordinat	ry differential	l equati	ions (3 rd Pri	nting)		
Reference Books					tary di	fferential			
	1. Williams E. Boyce and Richard C. Di Prima, <i>Elementary differential equations and boundary value problems</i> , John Wiley and sons, New York, 1967.								
	•	fimmons, <i>Differe</i> CGraw Hill, New	-		lication	es and histor	rical		
	3. N.N. Lebeo New Delhi, 1	lev, <i>Special func</i> i 965.	tions and the	eir applicatio	ns, Prei	ntice Hall of	f India,		
	· · · · · · · · · · · · · · · · · · ·	Ordinary Differe	ential Equati	ons, John Wi	iley and	l Sons, New	v York,		
	New Delhi 20			. .		1	2		
	6. B.Rai, D.P.Choudhury and H.I. Freedman, <i>A Course in Ordinary Differential Equations</i> , Narosa Publishing House, New Delhi, 2002.								

- 1. Recall the types of linear homogeneous equations of second order equations.
- 2. Analyse non homogeneous OE using the method of underlined coefficients.
- 3. Understand and apply the theorems on IVP to ODE and comprehend the EULERS equation and Bessel's equations, and Regular singular points.

SUBJECT NAME: GRAPH THEORY SUBJECT CODE : MFF1D

COURSE OBJECTIVES:

- 1. To give indepth knowledge about types of graphs, vertex and edge connectivity.
- 2. To understand matchings and colourings
- 3. To provide knowledge on independent sets, cliques and few applications of graph theory.

Title of th	ne Course	GRAPH THEORY								
Paper	Number	IV								
Category	Core	Year	Ι	Credits	4	Course				
		Semester	Ι			Code				
Pre-requis	ite	An elementary of	An elementary course in algebra							
Course Ou	tline	UNIT-I : Graph	ns, subgraph	s and Trees	Graphs a	and simple graph	s – Graph			
		Isomorphism – 7	The Incidence	e and Adjacen	cy Matric	ces – Subgraphs	– Vertex			
		Degrees – Paths	and Connect	ion – Cycles -	- Trees -	Cut Edges ana B	onds – Cut			
		Vertices.								
		Chapter 1 (Sect	ion 1.1 – 1.7)						
		Chapter 2 (Sect	ion 2.1 – 2.3)						
		UNIT-II :Conn			Hamiltor	Cycles : Conne	ectivity –			
		Blocks – Euler to			1101111101	i eyeles i conne	<i>beavily</i>			
		Chapter 3 (Sect		•						
		Chapter 4 (Sect								
		UNIT-III : Matchings, Edge Colourings : Matchings – Matchings and Coverings								
		in Bipartite Graphs – Edge Chromatic Number – Vizing's Theorem.								
		Chapter 5 (Section 5.1 – 5.2)								
		Chapter 6 (Section 6.1 – 6.2)								
		UNIT-IV : Indep Ramsey's Theo Polynomials. Chapter 7 (Sect Chapter 8 (Sect UNIT-V: Plana	rem – Chro ion 7.1 – 7.2 ion 8.1 – 8.2) , 8.4)	er – Bro	oks' Theorem -	- Chromatic			
		UNIT-V: Planar graphs : Plane and planar Graphs – Dual graphs – Euler's Formula – The Five- Colour Theorem and the Four-Colour Conjecture.								
		Chapter 9 (Sect				colour conjectu				
Recommer	nded Text	J.A.Bondy and U London, 1976	J.S.R. Murth		ory and A	pplications , Ma	cmillan,			
Reference	Books	1. J.Clark and D		First look at	Graph Th	heory, Allied Put	olishers, New			
		Delhi, 1			-	-				
		2. R. Gould. <i>Graph Theory</i> , Benjamin/Cummings, Menlo Park, 1989.								
		3. A.Gibbons, <i>Algorithmic Graph Theory</i> , Cambridge University Press,								
		Cambridge, 1989.								
		4. R.J.Wilson and J.J.Watkins, <i>Graphs : An Introductory Approach</i> , John Wiley and Sons, New York, 1989.								
		5. R.J. Wilson, <i>Introduction to Graph Theory</i> , Pearson Education, 4 th Edition,								
		2004, Indian Print.								
		6. S.A.Choudum, A First Course in Graph Theory, MacMillan India Ltd. 1987.								

LEARNING OUTCOMES:

- 1. Identify the properties of different graphs and their applications
- 2. Demonstrate knowledge of basic concepts of graph theory
- 3. Apply the concepts of graph theory in practical situations.

SUBJECT NAME: DISCRETE MATHEMATICS SUBJECT CODE: MFFAB COURSE OBJECTIVES:

- 1. To provide students with an overview of Lattices and its applications,
- 2.To Demonstrate knowledge of basic concepts of Boolean Algebra.

3.To Introduce the concept of Coding Theory.

Title of th	ne Course	A2. DISCRETE MATHEMATICS						
Category	Elective-I	Year	1	Credits	3	Course		
		Semester	I			Code		
Pre-requis	site	Elementar	y algebra	1	•		-	
Course Out	tline	UNIT-I : L	attices: Prop	erties of Latt	ices: Lattice of	definitions –	Modular	
					ras: Basic pro		olean	
					f Boolean pol	ynomials.		
		Chapter 1:						
				of Lattices:	Switching Ci	rcuits: Basic	Definitions	
		- Application						
		Chapter 2:						
		UNIT-III : I	finite Fields					
		Chapter 3:	§ 2					
		UNIT-IV : Polynomials : Irreducible Polynomials over Finite fields –						
		Factorization	n of Polynom	ials				
		Chapter 3:	§ 3 and §4.					
		UNIT-V: Coding Theory : Linear Codes and Cyclic Codes						
		Chapter 4 §						
Recommen	ded Text			Pilz, Appliea	l Abstract Alg	ebra, Spinge	er-Verlag,	
		New Yor						
Reference I	Books			ebra for Con	iputer Science	e, Prentice H	all Inc.,	
		New Jersey.						
		2. J.L.Gersting, <i>Mathematical Structures for Computer Science</i> (3 rd Edn.),						
		Computer Science Press, New York.						
		3. S.Wiitala, Discrete Mathematics- A Unified Approach, McGraw Hill Book Co.						
		McGraw Hill Book Co.						

LEARNING OUTCOMES:

Students will be able to

- 1. Perform logical proofs.
- 2. Apply recursive functions and solve recurrence relations.
- 3. Obtain the knowledge of coding theory.

<u>Semester – II</u>

SUBJECT NAME: ALGEBRA – II SUBJECT CODE: MFF2A

COURSE OBJECTIVES:

1. To Acquire knowledge on extension fields and roots of polynomials

2. To Analyze the elements of Galois theory and Galois Groups over the rationals

Paper Number V Category Core Year I Credits 4 Course Code Pre-requisite Algebra-I UNIT-1 : Extension fields – Transcendence of e. Chapter 5: Section 5.1 and 5.2 Course Outline UNIT-II : Extension fields – Transcendence of e. Chapter 5: Section 5.1 and 5.2 UNIT-II : Roots of Polynomials More about roots Chapter 5: Sections 5.3 and 5.5 UNIT-III : Elements of Galois theory. Chapter 5 : Sections 5.6 UNIT-IV : Finite fields - Wedderburn's theorem on finite division rings. Chapter 7: Sections 7.1 and 7.2 (Theorem 7.2.1 only) UNIT-V :Solvability by radicals – Galois groups over the Rationals – A theorem of Frobenius. Chapter 7: Sections 7.3 Recommended Text I.N. Herstein. Topics in Algebra (II Edition) Wiley 2002 1. M.Artin, Algebra, Prentice Hall of India, 1991. 2. P.B.Bhattacharya, S.K.Jain, and S.R.Nagpaul, Basic Abstract Algebra (II Edition) Cambridge University Press, 1997. (Indian Edition) 3. I.S.Luther and I.B.S.Passi, Algebra, Vol. I. Groups(1996); Vol. II Rings, (1999)Narosa Publishing House , New Delhi. 4. D.S.Dummit and R.M.Foote, Abstract Algebra, 2 nd edition, Wiley, 2002. 5. N.Jacobson, Basic Algebra, Vol. I & II Hindustan Publishing Company, New Delhi.	Title of th	ne Course	ALGEBRA – II							
Semester II Code Pre-requisite Algebra-I Course Outline UNIT-I :Extension fields – Transcendence of e. Chapter 5: Section 5.1 and 5.2 UNIT-II :Roots of Polynomials More about roots Chapter 5: Sections 5.3 and 5.5 UNIT-III : Roots of Polynomials More about roots Chapter 5: Sections 5.3 and 5.5 UNIT-III : Elements of Galois theory. Chapter 5 : Section 5.6 UNIT-IV : Finite fields - Wedderburn's theorem on finite division rings. Chapter 7: Sections 7.1 and 7.2 (Theorem 7.2.1 only) UNIT-V : Solvability by radicals – Galois groups over the Rationals – A theorem of Frobenius. Chapter 7: Sections 5.7 and 5.8 Chapter 7: Sections 7.3 Recommended Text I.N. Herstein. Topics in Algebra (II Edition) Wiley 2002 Reference Books 1. M.Artin, Algebra, Prentice Hall of India, 1991. 2. P.B.Bhattacharya, S.K.Jain, and S.R.Nagpaul, Basic Abstract Algebra (II Edition) Cambridge University Press, 1997. (Indian Edition) 3. I.S.Luther and I.B.S.Passi, Algebra, Vol. I – Groups(1996); Vol. II Rings, (1999)Narosa Publishing House , New Delhi. 4. D.S.Dummit and R.M.Foote, Abstract Algebra, 2 nd edition, Wiley, 2002. 5. N.Jacobson, Basic Algebra, Vol. I & II Hindustan Publishing	Paper Nun	nber	V							
Pre-requisite Algebra I Course Outline UNIT-I :Extension fields – Transcendence of e. Chapter 5: Section 5.1 and 5.2 UNIT-II :Roots of Polynomials More about roots Chapter 5: Sections 5.3 and 5.5 UNIT-III : Elements of Galois theory. Chapter 5: Section 5.6 UNIT-IV : Finite fields - Wedderburn's theorem on finite division rings. Chapter 7: Sections 7.1 and 7.2 (Theorem 7.2.1 only) UNIT-V :Solvability by radicals – Galois groups over the Rationals – A theorem of Frobenius. Chapter 7: Sections 5.7 and 5.8 Chapter 7: Sections 7.3 Recommended Text I.N. Herstein. <i>Topics in Algebra</i> (II Edition) Wiley 2002 Reference Books 1. M.Artin, Algebra, Prentice Hall of India, 1991. 2. P.B.Bhattacharya, S.K.Jain, and S.R.Nagpaul, Basic Abstract Algebra (II Edition) Cambridge University Press, 1997. (Indian Edition) 3. I.S.Luther and I.B.S.Passi, Algebra, Vol. I –Groups(1996); Vol. II Rings, (1999)Narosa Publishing House , New Delhi. 4. D.S.Dummit and R.M.Foote, Abstract Algebra, 2 nd edition, Wiley, 2002. 5. N.Jacobson, Basic Algebra, Vol. I & II Mindustan Publishing	Category	Core	Year	Ι	Credits	4	Course			
Course Outline UNIT-I :Extension fields – Transcendence of e. Chapter 5: Section 5.1 and 5.2 UNIT-II :Roots of Polynomials More about roots Chapter 5: Sections 5.3 and 5.5 UNIT-III : Elements of Galois theory. Chapter 5: Section 5.6 UNIT-IV : Finite fields - Wedderburn's theorem on finite division rings. Chapter 7: Sections 7.1 and 7.2 (Theorem 7.2.1 only) UNIT-V : Solvability by radicals – Galois groups over the Rationals – A theorem of Frobenius. Chapter 7: Sections 5.7 and 5.8 Chapter 7: Sections 7.3 Recommended Text I.N. Herstein. Topics in Algebra (II Edition) Wiley 2002 Reference Books 1. M.Artin, Algebra, Prentice Hall of India, 1991. 2. P.B.Bhattacharya, S.K.Jain, and S.R.Nagpaul, Basic Abstract Algebra (II Edition) Cambridge University Press, 1997. (Indian Edition) 3. I.S.Luther and I.B.S.Passi, Algebra, Vol. I –Groups(1996); Vol. II Rings, (1999)Narosa Publishing House , New Delhi. 4. D.S.Dummit and R.M.Foote, Abstract Algebra, 2 nd edition, Wiley, 2002. 5. N.Jacobson, Basic Algebra, Vol. I & II Hindustan Publishing			Semester	II	-		Code			
Chapter 5: Section 5.1 and 5.2UNIT-II : Roots of Polynomials More about rootsChapter 5: Sections 5.3 and 5.5UNIT-III : Elements of Galois theory.Chapter 5 : Section 5.6UNIT-IV : Finite fields - Wedderburn's theorem on finite division rings.Chapter 7: Sections 7.1 and 7.2 (Theorem 7.2.1 only)UNIT-V : Solvability by radicals – Galois groups over the Rationals A theorem of Frobenius.Chapter 7: Sections 5.7 and 5.8Chapter 7: Sections 7.3Recommended TextI.N. Herstein. Topics in Algebra (II Edition) Wiley 2002Reference Books1. M.Artin, Algebra, Prentice Hall of India, 1991.2. P.B.Bhattacharya, S.K.Jain, and S.R.Nagpaul, Basic Abstract Algebra (II Edition) Cambridge University Press, 1997. (Indian Edition)3. I.S. Luther and I.B.S.Passi, Algebra, Vol. I –Groups(1996); Vol. II Rings, (1999)Narosa Publishing House , New Delhi.4. D.S.Dummit and R.M.Foote, Abstract Algebra, 2 nd edition, Wiley, 2002. 	Pre-requisi	te	Algebra-I	•		1				
Image: Chapter 5: Sections 5.3 and 5.5 UNIT-III : Elements of Galois theory. Chapter 5 : Section 5.6 UNIT-IV : Finite fields - Wedderburn's theorem on finite division rings. Chapter 7: Sections 7.1 and 7.2 (Theorem 7.2.1 only) UNIT-V : Solvability by radicals – Galois groups over the Rationals – A theorem of Frobenius. Chapter 7: Sections 5.7 and 5.8 Chapter 7: Sections 7.3 Recommended Text I.N. Herstein. Topics in Algebra (II Edition) Wiley 2002 1. M.Artin, Algebra, Prentice Hall of India, 1991. 2. P.B.Bhattacharya, S.K.Jain, and S.R.Nagpaul, Basic Abstract Algebra (II Edition) Cambridge University Press, 1997. (Indian Edition) 3. I.S.Luther and I.B.S.Passi, Algebra, Vol. I –Groups(1996); Vol. II Rings, (1999)Narosa Publishing House , New Delhi. 4. D.S.Dummit and R.M.Foote, Abstract Algebra, 2 nd edition, Wiley, 2002. 5. N.Jacobson, Basic Algebra, Vol. I & II Hindustan Publishing	Course Out	tline	UNIT-I :Ex	tension fields	s – Transcene	lence of e.				
Chapter 5: Sections 5.3 and 5.5 UNIT-III : Elements of Galois theory. Chapter 5 : Section 5.6 UNIT-IV : Finite fields - Wedderburn's theorem on finite division rings. Chapter 7: Sections 7.1 and 7.2 (Theorem 7.2.1 only) UNIT-V : Solvability by radicals – Galois groups over the Rationals – A theorem of Frobenius. Chapter 5: Sections 5.7 and 5.8 Chapter 7: Sections 7.3 Recommended Text I.N. Herstein. Topics in Algebra (II Edition) Wiley 2002 I. M.Artin, Algebra, Prentice Hall of India, 1991. 2. P.B.Bhattacharya, S.K.Jain, and S.R.Nagpaul, Basic Abstract Algebra (II Edition) Cambridge University Press, 1997. (Indian Edition) 3. I.S.Luther and I.B.S.Passi, Algebra, Vol. I –Groups(1996); Vol. II Rings, (1999)Narosa Publishing House , New Delhi. 4. D.S.Dummit and R.M.Foote, Abstract Algebra, 2 nd edition, Wiley, 2002. 5. N.Jacobson, Basic Algebra, Vol. I & II Hindustan Publishing			Chapter 5:	Section 5.1 a	and 5.2					
UNIT-III : Elements of Galois theory.Chapter 5 : Section 5.6UNIT-IV : Finite fields - Wedderburn's theorem on finite division rings.Chapter 7: Sections 7.1 and 7.2 (Theorem 7.2.1 only)UNIT-V :Solvability by radicals – Galois groups over the Rationals – A theorem of Frobenius.Chapter 5: Sections 5.7 and 5.8Chapter 7: Sections 7.3Recommended TextI.N. Herstein. Topics in Algebra (II Edition) Wiley 2002Reference Books1. M.Artin, Algebra, Prentice Hall of India, 1991.2. P.B.Bhattacharya, S.K.Jain, and S.R.Nagpaul, Basic Abstract Algebra (II Edition) Cambridge University Press, 1997. (Indian Edition)3. I.S.Luther and I.B.S.Passi, Algebra, Vol. I –Groups(1996); Vol. II Rings, (1999)Narosa Publishing House , New Delhi.4. D.S.Dummit and R.M.Foote, Abstract Algebra, 2 nd edition, Wiley, 2002.5. N.Jacobson, Basic Algebra, Vol. I & II Hindustan Publishing			UNIT-II : R o	oots of Polyn	omials Mo	re about r	roots			
Chapter 5 : Section 5.6UNIT-IV : Finite fields - Wedderburn's theorem on finite division rings.Chapter 7: Sections 7.1 and 7.2 (Theorem 7.2.1 only)UNIT-V :Solvability by radicals – Galois groups over the Rationals – A theorem of Frobenius.Chapter 5: Sections 5.7 and 5.8Chapter 7: Sections 7.3Recommended TextI.N. Herstein. Topics in Algebra (II Edition) Wiley 2002Reference Books1. M.Artin, Algebra, Prentice Hall of India, 1991.2. P.B.Bhattacharya, S.K.Jain, and S.R.Nagpaul, Basic Abstract Algebra (II Edition) Cambridge University Press, 1997. (Indian Edition)3. I.S.Luther and I.B.S.Passi, Algebra, Vol. I –Groups(1996); Vol. II Rings, (1999)Narosa Publishing House, New Delhi.4. D.S.Dummit and R.M.Foote, Abstract Algebra, 2 nd edition, Wiley, 2002.5. N.Jacobson, Basic Algebra, Vol. I & IIHindustan Publishing										
UNIT-IV : Finite fields - Wedderburn's theorem on finite division rings.Chapter 7: Sections 7.1 and 7.2 (Theorem 7.2.1 only)UNIT-V :Solvability by radicals – Galois groups over the Rationals – A theorem of Frobenius.Chapter 5: Sections 5.7 and 5.8Chapter 7: Sections 7.3Recommended TextI.N. Herstein. Topics in Algebra (II Edition) Wiley 2002Reference Books1. M.Artin, Algebra, Prentice Hall of India, 1991.2. P.B.Bhattacharya, S.K.Jain, and S.R.Nagpaul, Basic Abstract Algebra (II Edition) Cambridge University Press, 1997. (Indian Edition)3. I.S.Luther and I.B.S.Passi, Algebra, Vol. I –Groups(1996); Vol. II Rings, (1999)Narosa Publishing House , New Delhi.4. D.S.Dummit and R.M.Foote, Abstract Algebra, 2 nd edition, Wiley, 2002.5. N.Jacobson, Basic Algebra, Vol. I & II Hindustan Publishing			UNIT-III :	Elements of (Galois theory					
Chapter 7: Sections 7.1 and 7.2 (Theorem 7.2.1 only)UNIT-V :Solvability by radicals – Galois groups over the Rationals – A theorem of Frobenius.Chapter 5: Sections 5.7 and 5.8Chapter 7: Sections 7.3Recommended TextI.N. Herstein. Topics in Algebra (II Edition) Wiley 2002Reference Books1. M.Artin, Algebra, Prentice Hall of India, 1991.2. P.B.Bhattacharya, S.K.Jain, and S.R.Nagpaul, Basic Abstract Algebra (II Edition) Cambridge University Press, 1997. (Indian Edition)3. I.S.Luther and I.B.S.Passi, Algebra, Vol. I –Groups(1996); Vol. II Rings, (1999)Narosa Publishing House , New Delhi.4. D.S.Dummit and R.M.Foote, Abstract Algebra, 2 nd edition, Wiley, 2002.5. N.Jacobson, Basic Algebra, Vol. I & IIHindustan Publishing										
UNIT-V :Solvability by radicals – Galois groups over the Rationals – A theorem of Frobenius.Chapter 5: Sections 5.7 and 5.8 Chapter 7: Sections 7.3Recommended TextI.N. Herstein. <i>Topics in Algebra</i> (II Edition) Wiley 2002Reference Books1. M.Artin, Algebra, Prentice Hall of India, 1991. 2. P.B.Bhattacharya, S.K.Jain, and S.R.Nagpaul, Basic Abstract Algebra (II Edition) Cambridge University Press, 1997. (Indian Edition) 3. I.S.Luther and I.B.S.Passi, Algebra, Vol. I –Groups(1996); Vol. II Rings, (1999)Narosa Publishing House , New Delhi. 4. D.S.Dummit and R.M.Foote, Abstract Algebra, 2 nd edition, Wiley, 2002. 5. N.Jacobson, Basic Algebra, Vol. I & II Hindustan Publishing			UNIT-IV:							
Heorem of Frobenius.Chapter 5: Sections 5.7 and 5.8Chapter 7: Sections 7.3Recommended TextI.N. Herstein. Topics in Algebra (II Edition) Wiley 2002Reference Books1. M.Artin, Algebra, Prentice Hall of India, 1991.2. P.B.Bhattacharya, S.K.Jain, and S.R.Nagpaul, Basic Abstract Algebra (II Edition) Cambridge University Press, 1997. (Indian Edition)3. I.S.Luther and I.B.S.Passi, Algebra, Vol. I – Groups(1996); Vol. II Rings, (1999)Narosa Publishing House, New Delhi.4. D.S.Dummit and R.M.Foote, Abstract Algebra, 2 nd edition, Wiley, 2002. 5. N.Jacobson, Basic Algebra, Vol. I & II Hindustan Publishing										
Chapter 5: Sections 5.7 and 5.8Chapter 7: Sections 7.3Recommended TextI.N. Herstein. Topics in Algebra (II Edition) Wiley 2002Reference Books1. M.Artin, Algebra, Prentice Hall of India, 1991.2. P.B.Bhattacharya, S.K.Jain, and S.R.Nagpaul, Basic Abstract Algebra (II Edition) Cambridge University Press, 1997. (Indian Edition)3. I.S.Luther and I.B.S.Passi, Algebra, Vol. I –Groups(1996); Vol. II Rings, (1999)Narosa Publishing House , New Delhi.4. D.S.Dummit and R.M.Foote, Abstract Algebra, 2 nd edition, Wiley, 2002. 5. N.Jacobson, Basic Algebra, Vol. I & II Hindustan Publishing					radicals – Ga	ulois group	s over the Rationa	ıls — A		
Recommended TextI.N. Herstein. Topics in Algebra (II Edition) Wiley 2002Reference Books1. M.Artin, Algebra, Prentice Hall of India, 1991.2. P.B.Bhattacharya, S.K.Jain, and S.R.Nagpaul, Basic Abstract Algebra (II Edition) Cambridge University Press, 1997. (Indian Edition)3. I.S.Luther and I.B.S.Passi, Algebra, Vol. I –Groups(1996); Vol. II Rings, (1999)Narosa Publishing House , New Delhi.4. D.S.Dummit and R.M.Foote, Abstract Algebra, 2 nd edition, Wiley, 2002. 5. N.Jacobson, Basic Algebra, Vol. I & II Hindustan Publishing										
Recommended TextI.N. Herstein. Topics in Algebra (II Edition) Wiley 2002Reference Books1. M.Artin, Algebra, Prentice Hall of India, 1991.2. P.B.Bhattacharya, S.K.Jain, and S.R.Nagpaul, Basic Abstract Algebra (II Edition) Cambridge University Press, 1997. (Indian Edition)3. I.S.Luther and I.B.S.Passi, Algebra, Vol. I –Groups(1996); Vol. II Rings, (1999)Narosa Publishing House , New Delhi.4. D.S.Dummit and R.M.Foote, Abstract Algebra, 2 nd edition, Wiley, 2002. 5. N.Jacobson, Basic Algebra, Vol. I & II Hindustan Publishing			Chapter 5:	Sections 5.7	and 5.8					
Reference Books1. M.Artin, Algebra, Prentice Hall of India, 1991.2. P.B.Bhattacharya, S.K.Jain, and S.R.Nagpaul, Basic Abstract Algebra (II Edition) Cambridge University Press, 1997. (Indian Edition)3. I.S.Luther and I.B.S.Passi, Algebra, Vol. I –Groups(1996); Vol. II Rings, (1999)Narosa Publishing House , New Delhi.4. D.S.Dummit and R.M.Foote, Abstract Algebra, 2 nd edition, Wiley, 2002. 5. N.Jacobson, Basic Algebra, Vol. I & II Hindustan Publishing			Chapter 7: Sections 7.3							
 P.B.Bhattacharya, S.K.Jain, and S.R.Nagpaul, <i>Basic Abstract Algebra</i> (II Edition) Cambridge University Press, 1997. (Indian Edition) I.S.Luther and I.B.S.Passi, <i>Algebra</i>, Vol. I –Groups(1996); Vol. II <i>Rings</i>, (1999)Narosa Publishing House, New Delhi. D.S.Dummit and R.M.Foote, <i>Abstract Algebra</i>, 2nd edition, Wiley, 2002. N.Jacobson, <i>Basic Algebra</i>, Vol. I & II Hindustan Publishing 	Recommen	ded Text	I.N. Herste	in. Topics in	Algebra (II I	Edition) W	iley 2002			
 Edition) Cambridge University Press, 1997. (Indian Edition) 3. I.S.Luther and I.B.S.Passi, <i>Algebra</i>, Vol. I –Groups(1996); Vol. II <i>Rings</i>, (1999)Narosa Publishing House, New Delhi. 4. D.S.Dummit and R.M.Foote, <i>Abstract Algebra</i>, 2nd edition, Wiley, 2002. 5. N.Jacobson, <i>Basic Algebra</i>, Vol. I & II Hindustan Publishing 	Referen	ce Books	1. M.Artin, A	Algebra, Prer	ntice Hall of	India, 1991	l .			
 (1999)Narosa Publishing House, New Delhi. 4. D.S.Dummit and R.M.Foote, <i>Abstract Algebra</i>, 2nd edition, Wiley, 2002. 5. N.Jacobson, <i>Basic Algebra</i>, Vol. I & II Hindustan Publishing 						01		lgebra (II		
5. N.Jacobson, Basic Algebra, Vol. I & II Hindustan Publishing										
			4. D.S.Dummit and R.M.Foote, <i>Abstract Algebra</i> , 2 nd edition, Wiley, 2002.							

3. To Understand the basic concepts of solvability by radicals and finite fields.

LEARNING OUTCOMES:

Students will be able to

- 1. Provide deep knowledge about various algebraic structures.
- 2. Apply Galois Theory to the solvability of polynomial
- Equations by radicals.
- 3. Formulate some special roots of polynomials.

SUBJECT NAME: REAL ANALYSIS – II SUBJECT CODE: MFF2B

- 1. To provide a deeper and rigorous understanding of Measure theory.
- 2. To understand the concept of Fourier series and fourier integrals.
- 3. To provide deep insight into the concepts of Multi variable differential calculus, implicit

functions and extreme problems.

	he Course	REAL ANALYSIS – II						
-	Number			VI				
Category	Core	Year Semester	I II	Credits	4	Course Code		
Duo no quia						Coue		
Pre-requis		Real Analy		D 11	<u>, 1 0</u>		N/ 11	
Course Ou		UNIT-I: N sets - Regul Chapter - 2 UNIT-II : Non- negat Integrals Chapter - 3 UNIT-III Orthogonal Fourier seri Fourier Coor representati Lebesgue L the partial Sufficient c - Cesarosur The Weiers Chapter 11 UNIT-IV Directional derivative - The matrix form of cha - A sufficie equality of to R ¹ Chapter 12 UNIT-V : I non-zero Jae function the	Ieasure on th arity - Measure 2 Sec 2.1 to 2 Integration ive functions 3 Sec 3.1,3.2 a : Fourier S system of function efficients - T on problems emma - The sums of Fo onditions for mability of trass approxint : Sections 1 : Multivaria derivative - The total de of linear func in rule - The ent condition mixed partial 2 : Section 12 Implicit Func cobian determ	rable Function .5 of de Barry of Function - The Generation - The Generation - The Generation and 3.4 of de Geries and netions - The on relative to he Riesz-Fiss in for trig Dirichlet Int urier series convergence Fourier series convergence Fourier series convergence Fourier series convergence Dirichlet Int urier series convergence Dirichlet Int urier series convergence Fourier series to 11.15 ble Different Directional rivative expution - The Jac mean - value for different derivatives .1 to 12.14 of ctions and F ninants – The na of real value	ns - Borel ar ra s of a Real ral Integral e Barra Fourier In e theorem on a northonor cher Thoren gonometric egrals - An - Riemann of a Fourier es- Conseque of Apostol ntial Calcu derivative a ressed in ter cobian matri e theorem foo ntiability - A - Taylor's th f Apostol Extremum F inverse fund lued functio	uter Measure ad Lebesgue M variable - In - Riemann a tegrals - In a best approxi- mal system - m - The conv- series - The integral repre- 's localization- series at a par- ences of Fejes lus - Introdu- nd continuity ms of partial x - The chain r differentiabl A sufficient of teorem for fun- Problems : Fu- ction theorem- ns of severab	Measurability ntegration of nd Lebesgue troduction - mation - The Properties of vergence and Riemann - sentation for n theorem - rticular point s's theorem - function - The vergence and Riemann - sentation for n theorem - tricular point s's theorem - n theorem - n theorem - tricular point s's theorem - s's theorem	
		Chapter 13	3 : Sections 1.	3.1 to 13.7 of	f Apostol			
Recommen	ided Text	1. G. de Bar 2003 (for U	rra, <i>Measure</i> (nits I and II)	Theory and I	ntegration, 1	New Age Inter		
		Units III	, IV and V)			dition, Narosa	×	
Reference	Books	 Burkill,J.C. <i>The Lebesgue Integral</i>, Cambridge University Press, 1951. Munroe,M.E. <i>Measure and Integration</i>. Addison-Wesley, Mass.1971. Royden,H.L.<i>Real Analysis</i>, Macmillan Pub. Company, New York, 1988. Rudin, W. <i>Principles of Mathematical Analysis</i>, McGraw Hill Company, New York, 1979. Malik,S.C. and Savita Arora. <i>Mathematical Analysis</i>, Wiley Eastern Limited. New Delhi, 1991. 						

LEARNING OUTCOMES:

Students will acquire knowledge about

- 1. The Real Numbers and the Analytic Properties of Real- Valued Functions.
- 2. The Analytic concepts of Connectedness, Compactness, Completeness And Calculus.
- 3. Evaluate laplace equation and analyze its application.

SUBJECT NAME: PARTIAL DIFFERENTIAL EQUATIONS SUBJECT CODE: MFF2C

- 1. To Introduce different methods to solve partial differential equations.
- 2.To Aquire knowledge in classification of PDE and the methods to solve.
- 3. To Enables the students to find the solutions of PDE in practical application like Engineering, physics etc.,

Title of th	e Course	PARTIAL DIFFERENTIAL EQUATIONS						
Paper N	lumber		VII					
Category	Core	Year	Ι	Credits	4	Course		
		Semester	II			Code		
Pre-requisit	te	UG level dif	fferential equ	ations	1	I.		
Course Out	line	UNIT-I : Pa	rtial Differe	ential Equati	ons of First	Order: Form	ation and	
						m order eqn-		
						racteristics – (
				. Fundament	als: Classific	cation and car	nonical	
		forms of PD				-		
				omit 0 .1,0.2,	0.3 and 0.11.	1)		
		Chapter 1:		Parran 4 al Tar				
						rivation of I - Dirichlet's I		
						nd Exterior		
		problems for a circle – Interior Newmann problem for a circle – Solution of Laplace equation in Cylindrical – Examples. Chapter 2: 2.1, 2. 2 ,2.5 to						
				2.4&2.12 ar				
						prmation and	solution of	
						tion of varial		
				quation in Cy				
		Chapter 3: 3	3.1 to 3.6 an	d 3.9 (omit 3	.7,3.8 & 3.10)		
		UNIT-IV :Hyperbolic Differential equations: Formation and solution of one-dimensional wave equation – canocical reduction – IVP- d'Alembert's solution – Vibrating string – Forced Vibration – IVP and BVP for two-dimensional wave equation – Periodic solution of one-dimensional wave equation in cylindrical and spherical coordinate systems – vibration of circular membrane – Uniqueness of the solution for the wave equation Chapter 4: 4.1 to 4.8,4.10&4.11(omit 4.9,4.12&4.13)						
UNIT-V: Green's Function: Green's function for laplace Equ methods of Images – Eigen function Method – Green's function for th and Diffusion equations. Laplace Transform method: Solur Diffusion and Wave equation by Laplace Transform. Chapter 5: 5.1 to 5.6 Chapter 6: 6.13.1 and 6.13.2 only (omit (6.1				for the wave Solution of (6.14)				
Recomment	ded Text			tion to Partie New Delhi.		el Equations, 2	2 nd Edition,	

Reference Books	 R.C.McOwen, Partial Differential Equations, 2ndEdn. Pearson Eduction, New Delhi, 2005. I.N.Sneddon, Elements of Partial Differential Equations, McGraw Hill, New Delhi, 1983.
	 New Delhi, 1983. 3. R. Dennemeyer, Introduction to Partial Differential Equations and Boundary Value Problems, McGraw Hill, New York, 1968. M.D.Raisinghania, Advanced Differential Equations, S.Chand& Company Ltd., New Delhi, 2001.

Students will be able to

- 1. Understand and remember the physical situations with real world problems to construct mathematical models using PDE.
- 2. Analyze the type of PDE and different methods to solve.
- **3.** Evaluate Laplace equation and analyze its application

SUBJECT NAME: PROBABILITY

SUBJECT CODE: MFF2D

- 1. To Develop the mathematical probability and their applications
- 2. To Acquire knowledge about characteristic functions and properties of theoretical distributions.
- 3.To Study unbiasedness and consistency of limit theorems .

Title of th	ne Course			PROBA	BILITY			
Paper N	Number	VIII						
Category	Core	Year	Ι	Credits	4	Course		
		Semester	II			Code		
Pre-requisi	te	UG level ca	lculus and 1	eal analysis			•	
Course Out	tline	UNIT-I : R	andom Eve	ents and Ra	ndom Varia	ables: Rand	om events –	
	Probability axioms – Combinatorial formulae – conditional probabi						probability –	
		Bayes Theorem	rem – Indep	endent events	s - Random	Variables -	Distribution	
		Function –	Joint Distr	ibution – N	larginal Dis	stribution -	Conditional	
			– Independ	dent random	variables -	- Functions	of random	
		variables.						
		Chapter 1:						
		Chapter 2 :						
							oments – The	
							s – Moments	
				ression of the	first and sec	ond types.		
		Chapter 3 :						
				c functions :				
							characteristic	
		function of the sum of the independent random variables – Determination of distribution function by the Characteristic function – Characteristic function						
			•					
				lom vectors –	Probability g	generating fu	inctions.	
			Sections 4.1			•		
				bability dist				
		Binomial – Polya – Hypergeometric – Poisson (discrete) distributions –						
		Uniform – normal gamma – Beta – Cauchy and Laplace (continuous) distributions.						
			G			11)		
		Chapter 5 :	Section 5.1	to 5.10 (Omi	t Section 5.	11)		

	UNIT-V:Limit Theorems : Stochastic convergence – Bernaulli law of large numbers – Convergence of sequence of distribution functions – Levy- Cramer Theorems – de Moivre-Laplace Theorem – Poisson, Chebyshev, Khintchine Weak law of large numbers – Lindberg Theorem – LapunovTheroem – Borel-Cantelli Lemma - Kolmogorov Inequality and Kolmogorov Strong Law of large numbers							
	Kolmogorov Strong Law of large numbers. Chapter 6 : Sections 6.1 to 6.4, 6.6 to 6.9 , 6.11 and 6.12. (Omit Sections 6.5, 6.10,6.13 to 6.15)							
Recommended Text	M. Fisz, <i>Probability Theory and Mathematical Statistics</i> , John Wiley and Sons, New York, 1963.							
Reference Books	1. R.B. Ash, <i>Real Analysis and Probability</i> , Academic Press, New York, 1972							
	 K.L.Chung, A course in Probability, Academic Press, New York, 1974. R.Durrett, Probability : Theory and Examples, (2nd Edition) Duxbury Press, New York, 1996. 							
	5. V.K.RohatgiAn Introduction to Probability Theory and Mathematical Statistics, Wiley Eastern Ltd., New Delhi, 1988(3 rd Print).							
	 6. S.I.Resnick, <i>A Probability Path</i>, Birhauser, Berlin, 1999. 7. B.R.Bhat , <i>Modern Probability Theory</i> (3rd Edition), New Age International (P)Ltd, New Delhi, 1999 							

Students will be able to

- 1. Apply the concepts and methods to find the moments of the distributions.
- 2. Study multivariate distributions and the independence of random variables. Further evaluating the marginal distributions from bivariate distributions.
- 3. Understand the convergence of distributions and central limit theorem

GROUP B : ELECTIVE-II

SUBJECT NAME: MATHEMATICAL PROGRAMMING SUBJECT CODE : MFFAD

- 1.To make the students understand solving LPP using various methods.
- 2.To understand the concept of Nonlinear Programming Problems .
- 3.Solving LPP through Dynamic Programming

Title of the	course	B1.MATHEMATICAL PROGRAMMING						
Category	Elective-	Year	Ι	Credits	3	Course		
	Π	Semester	II			Code		
Pre-requis	Pre-requisite Basic mathematical programming techniques							
Course out	tline	UNIT $-I$:	Integer Li	near Programm	ing : Ty	ypes of Integer	Linear	
		Programming Problems – Concept of Cutting Plane – Gomory's All Integer						
		Cutting Plane Method - Gomory's Mixed Integer Cutting Plane Method-						
		Branch and Bound Method						
		Chapter 7						
		UNIT – II :	- II : Dynamic Programming : Characteristics of Dynamic					
		Programming Problem - Developing Optimal Decision Policy- Dynamic						
		Programming under Certainty – DP approach to solve LPP						
		Chapter 22						

Г	1						
	UNIT – III: Classical Optimization Method : Unconstrained Optimization						
	- Constrained Multi- variable Optimization with Equality Constraints -						
	Constrained Multi-variable Optimization with inequality Constraints						
	Non-linear Programming Methods : Examples of NLPP – General NLPP						
	- Graphical Solution - Quadratic Programming - Wolfe's modified simplex						
	method						
	Chapter 23						
	Chapter 24: Sections 24.1 to 24.4 (Omit Beale's method)						
	UNIT – IV :Linear Programming Problem – Simple problems.						
	Parametric Linear Programming : Variation in the coefficients cj,						
	Variations in the Right hand side, b _i						
	Chapter 4 : Section 4.1 to 4.3						
	Chapter 29						
	UNIT – V: Goal Programming : Difference between LP and GP approach						
	- Concept of Goal Programming - Goal Programming Model formulation -						
	Graphical solution method of Goal Programming.						
	Chapter 8 : Section 8.1 to 8.5						
Recommended Text	J.K.Sharma, Operations Research,(fourth edition) Macmillan, New Delhi,						
	2009						
Reference Books	1. Hamdy A. Taha, Operations Research, (Seventh edition)						
	Prentice – Hall of India Private Limited, New Delhi, 1997						
	2. F.S. Hiller &J.Lieberman Introduction to Operations Research (7 th						
	edition) Tata – McGraw Hill Company, New Delhi, 2001.						
	3. Beightler. C, D.phillips, B. Wilde, Foundations of Optomization (2 nd						
	edition) Prentice Hall Pvt Ltd., New York, 1979						
	4. S.S. Rao – Optimization Theory and Applications, Wiley Eastern,						
	New Delhi. 1990						

Students will be able to

- 1 .Explain various techniques to solve real life problems expressed in terms of LPP.
- 2. Explain various techniques to solve real life problems expressed in terms of LPP.
- 3. Apply the fundamental concept of Integer Programming Problems .

Extra Disciplinary -I

ŠUBJECT NAME: PROGRAMMING IN C⁺⁺ SUBJECT CODE: MFFBB

- 1. To give the students an awareness of the object oriented programming.
- 2. To enable the students to write the C++ programs using classes, functions and interfaces.
- 3. To make applications using C++ programs.

Title of the	e course		2.PROGRA	MMING IN	N C ⁺⁺		
Category	Extra Disciplingues I	Year	Ι	Credits	3	Course	
	Disciplinary -I	Semester	Π			Code	

Pre-requisite	Basics of Computer Programming
Course Outline	UNIT – I : Tokens, Expressions and Control Structures
	Chapter 3 : Sections 3.1 – 3.25
	UNIT – II : Functions in C ⁺⁺
	Chapter 4 : Sections 4.1 to 4.12
	UNIT – III : Classes and Objects
	Chapter 5 : Sections 5.1 to 5.19
	UNIT – IV : Constructors and Destructors
	Chapter 6 : Sections 6.1 – 6.11
	UNIT – V: Operator overloading and Type Conversions
	Chapter 7 : Sections 7.1 to 7.9
Recommended Text	E. Balaguruswamy, Object Oriented Programming with C ⁺⁺ , Tata
	McGraw Hill, New Delhi, 1999
Reference Books	D.Ravichandran, Programming with C ⁺⁺ , Tata McGraw Hill, New Delhi,
	1996

Students will be able to

- 1. Create Classes, objects, arrays of objects, constructors, and Destructors
- 2. Analyze over loading operators and inheritance
- 3. Deliberate files, pointers and templates. Create, design and develop quality programs in c++

<u>Semester – III</u>

SUBJECT NAME: COMPLEX ANALYSIS-I SUBJECT CODE: MFF3A

- 1.To Evaluate integrals, singularities and determine the values of integrals using residues.
- 2.To Apply and understand about limits and to know how they are used in series and problems.
- 3. To Analyze functions of complex variables in terms of continuity and analyticity.

Title of th	COMPLEX ANALYSIS-I						
Paper Number		IX					
Category	Core	Year	II	Credits	4	Course	
		Semester	III			Code	
Pre-requisite Real Analysis and UG level Comple				lex Analys	is		
Course Out	line	UNIT-I : Cauchy's Integral Formula: The Index of a point with respect to a closed curve – The Integral formula – Higher derivatives. Local Properties of analytical Functions : Removable Singularities-Taylors's Theorem – Zeros and poles – The local Mapping – The Maximum Principle					l ors's
	Chapter 4 : Section 2 : 2.1 to 2.3, Section 3 : 3.1 to 3.4						

	UNIT-II : The general form of Cauchy's Theorem : Chains and cycles-						
	Simple Connectivity - Homology - The General statement of Cauchy's						
	Theorem - Proof of Cauchy's theorem - Locally exact differentials-						
	Multilply connected regions - Residue theorem - The argument principle.						
	Chapter 4 : Section 4 : 4.1 to 4.7, Section 5: 5.1 and 5.2						
	UNIT-III : Evaluation of Definite Integrals and Harmonic Functions:						
	Evaluation of definite integrals - Definition of Harmonic functions and						
	basic properties - Mean value property - Poisson formula.						
	Chapter 4 : Section 5 : 5.3, Section 6 : 6.1 to 6.3						
	UNIT-IV : Harmonic Functions and Power Series Expansions:						
	Schwarz theorem - The reflection principle - Weierstrass theorem - Taylor						
	Series – Laurent series.						
	Chapter 4 : Sections 6.4 and 6.5						
	Chapter 5 : Sections 1.1 to 1.3						
	UNIT-V: Partial Fractions and Entire Functions: Partial fractions -						
	Infinite products – Canonical products – Gamma Function- Jensen's						
	formula						
	Chapter 5 : Sections 2.1 to 2.4, Sections 3.1						
Recommended Text	Lars V. Ahlfors, Complex Analysis, (3 rd edition) McGraw Hill Co., New						
	York, 1979						
Reference Books	1.H.A. Priestly, Introduction to Complex Analysis, Clarendon						
	Press,Oxford, 2003.						
	2.J.B.Conway, Functions of one complex variable Springer International						
	Edition, 2003						
	3.T.WGamelin, Complex Analysis, Springer International Edition, 2004.						
	4.D.Sarason, Notes on complex function Theory, Hindustan Book Agency,						
	1998						
	1770						

Students will be able to

- 1 .Define and recognise the basic properties of complex numbers.
- 2. Apply CR equations and harmonic functions to solve problems.
- 3. Understand the concepts of complex functions and its related theorems.

SUBJECT NAME: TOPOLOGY SUBJECT CODE: MFF3B

- 1. To Demonstrate knowledge and understanding the concepts of topological spaces.
- 2. To understand the concepts of continuous functions, connectedness and compactness.
- 3. To Introduce the conepts of countability and separation axioms.

Title of th	e Course	TOPOLOGY						
Paper N	lumber	X						
Category	Core	Year	Year II Credits 4 Course					
		Semester	III			Code		
Pre-requisite Real Analysis					· · ·			
Course Out	line	X x Y, Sub functions.	space topole		sets and I	gy, Product topology on Limit points, Continuous		

	 Unit II - Connected spaces, Connected subspaces of the real line, Components and Local connectedness, Compact spaces, Compact subspaces of the real line. Chapter 3 - Sections 23, 24, 25, 26, 27. 				
	 Unit III - Countability axioms, Separation axioms, Normal spaces, Urysohn's Lemma, Urysohn metrization theorem, Tietze extension theorem. Chapter 4 - Sections 30, 31, 32, 33, 34, 35 Unit IV - Product topology, Tychonoff theorem Chapter 2 - Sections 19. Chapter 5 - Section 37. 				
	Unit V - Homotopy of paths, Fundamental group. Chapter 9 - Sections 51, 52.				
Recommended Text	James R. Munkres "Topology" (Second edition) PHI, 2015.				
Reference Books	1. T.W. Gamelin and R.E. Greene, <i>Introduction to Topology</i> , The Saunders Series, 1983.				
	2. G.F. Simmons, Introduction to Topology and Modern Analysis, Mcgraw-Hill				
	3. J. Dugundji, <i>Topology</i> , Prentice Hall of India.				
	4. J.L. Kelly, General Topology, Springer.				
	5. S. Willard, <i>General Topology</i> , Addison-Wesley.				
LEARNING OUTCO	MES:				

LEARNING OUTCOMES: Students will be able to

- 1. Create new topological spaces by using subspace, product and quotient topology.
- 2. Construct a variety of examples and counter examples in topology.
- 3.Understand the properties of the compact spaces and analyse the different types of Compactness.

SUBJECT NAME: OPERATIONS RESEARCH SUBJECT CODE: MFF3C

- 1. To understand the concept of Network models.
- 2. To make the students understand and solving Deterministic inventory controls.
- 3.To understand the application of queuing theory in real life situation and methods of solving related problems.

Title of the	Course	OPERATIONS RESEARCH					
Paper Num	ber	XI					
Category	Core	Year	II	Credits	4	Course	
		Semester	III			Code	
Pre-requisi	te	UG Level Operations Research					

Course Outline	UNIT-I : Decision Theory : Steps in Decision theory Approach – Types of Decision-Making Environments – Decision Making Under Uncertainty – Decision Making under Risk – Posterior Probabilities and Bayesian Analysis – Decision Tree Analysis – Decision Making with Utilities. Chapter 10 : Sec. 10.1 to 10.8				
	UNIT-II : Network Models : Scope of Network Applications – Network Definition – Minimal spanning true Algorithm – Shortest Route problem – Maximum flow model – Minimum cost capacitated flow problem - Network representation – Linear Programming formulation – Capacitated Network simplex Algorithm.				
	Chapter 6 : Sections 6.1 to 6.6				
	H.A.Taha : Operations Research				
	UNIT-III : Deterministic Inventory Control Models: Meaning of Inventory Control – Functional Classification – Advantage of Carrying Inventory – Features of Inventory System – Inventory Model building – Deterministic Inventory Models with no shortage – Deterministic Inventory with Shortages				
	Probabilistic Inventory Control Models:				
	Single Period Probabilistic Models without Setup cost - Single Period				
	Probabilities Model with Setup cost.				
	Chapter 13: Sec. 13.1 to 13.8				
	Chapter 14: Sec. 14.1 to 14.3				
	UNIT-IV : Queueing Theory : Essential Features of Queueing System –				
	Operating Characteristic of Queueing System – Probabilistic Distribution in Queueing Systems – Classification of Queueing Models – Solution of Queueing Models – Probability Distribution of Arrivals and Departures – Erlangian Service times Distribution with k-Phases.				
	Chapter 15 : Sec. 15.1 to 15.8				
	UNIT-V : Replacement and Maintenance Models: Failure Mechanism of items – Replacement of Items that deteriorate with Time – Replacement of items that fail completely – other Replacement Problems.				
	Chapter 16: Sec. 16.1 to 16.5				
Recommended Texts	 For Unit 2 : H.A. Taha, <i>Operations Research</i>, 6th edition, Prentice Hall of India For all other Units: J.K.Sharma, <i>Operations Research</i>, MacMillan India, New Delhi, 2001. 				
Reference Books	1. F.S. Hiller and J.Lieberman -, Introduction to Operations Research (7 th				
	 Edition), Tata McGraw Hill Publishing Company, New Delhui, 2001. 2. Beightler. C, D.Phillips, B. Wilde <i>Foundations of Optimization</i> (2nd Edition) Prentice Hall Pvt Ltd., New York, 1979 				
	 Bazaraa, M.S; J.J.Jarvis, H.D.Sharall <i>,Linear Programming and Network flow</i>, John Wiley and sons, New York 1990. Gross, D and C.M.Harris, <i>Fundamentals of Queueing Theory</i>, (3rd Edition), Wiley and Sons, New York, 1998. 				

LEARNING OUTCOMES: Students will be able to

1.Explain various techniques to solve real life problems in decision theory.

2. Apply the fundamental concept of Inventory control.

3.Understand the queuing theory.

SUBJECT NAME: MECHANICS

SUBJECT CODE: MFF3D

COURSE OBJECTIVES:

To demonstrate knowledge and understanding of the following fundamental concepts in:

- 1. The dynamics of system of particles motion of rigid body.
- 2. Lagrangian and Hamiltonian formulation of mechanics.
- 3. Derive the equations of motion for complicated mechanical systems using the Lagrangian and Hamiltonian formulation of classical mechanics.

Title of tl	he Course	Se MECHANICS						
Paper I	Number	XII						
Category	Core	Year	II	Credits	4	Course		
		Semester	III			Code		
Pre-requisi	ite	Calculus a	nd Different	ial equations	•		1	
Course Ou	tline	coordinates	•	stems : The N s - Virtual wo t o 1.5	•			
		UNIT-II :Lagrange's Equations: Derivation of Lagrange's equations- Examples- Integrals of motion.						
		Chapter 2 : Sections 2.1 to 2.3 (Omit Section 2.4)						
				uations : Han nal principles		iple - Hamilt	ton's	
		Chapter 4	Sections 4.1	to 4.3 (Omi	t section 4.4))		
				acobi Theory n - Separabili		rinciple func	ction –	
		Chapter 5	Sections 5.1	to 5.3				
				nsformation : sformations–		0	U	
		Chapter 6	Sections 6.1	, 6.2 and 6.3	(omit sectio	ns 6.4, 6.5 a	and 6.6)	
Recommen	ded Text	1985.		<i>Dynamics</i> , P				
Reference Books 1. H. Goldstein, Classical Mechanics, (2 nd Edition) Narosa F House, New Delhi. 2. N.C.Rane and P.S.C.Joag, Classical Mechanics, Tata McC 3. J.L.Synge and B.A.Griffth, Principles of Mechanics (3 rd F McGraw Hill Book Co., New York, 1970.				Tata McGrav	w Hill, 1991.			

LEARNING OUTCOMES:

Students will be able to

- 1. Define and understand basic mechanical concepts related to discrete and continuous mechanical systems,
- 2. Describe and understand the motion of a mechanical system using Lagrange-Hamilton formalism.
- 3. Identify canonical transformations and apply Lagrange- Poisson Brackets.

GROUP C: ELECTIVE-III

SUBJECT NAME: NUMBER THEORY AND CRYPTOGRAPHY

SUBJEC CODE: MFFAH

COURSE OBJECTIVES:

- 1. To provide an exposure in advanced number theory concepts
- 2. To introduce cryptography and make them to encipher and decipher text messages using number theory and algebra concepts.
- 3. To learn public key cryptography.

Title of the course		C2.NUMBER THEORY AND CRYPTOGRAPHY							
Category	Elective-	Year		II	Credits	3	Course		
	Ш	Semester		III	1		Code		
Pre-requis	site	Elementar	y number	theory	and calculus	I			
Course Out	tline	UNIT – I :	Elementar	y Numb	er Theory : Tin	ne estimate	s for doing arith	metic –	
		divisibility	and the Eu	uclidean	algorithm				
		Chapter 1	: Sections	s 1 and 2					
		UNIT - II :	Elementa	ry Numb	er Theory :Cor	ngruences -	- Some applicati	ions to	
		factoring							
		Chapter 1	: Sections	s 3 and 4					
		UNIT – III : Finite Fields and Quadratic Residues: Finite Fields, Quadratic							
		residues and reciprocity							
		Chapter 2 : Sections 1 and 2							
		UNIT – IV : Cryptography : Some simple cryptosystems Enciphering							
		matrices							
		Chapter 3 : Sections 1 and 2.							
		UNIT - V : Public Key : Public Key Cryptography - RSA							
		Chapter 4 : Sections 1 and 2							
Recommen	nded Text	Neal Koblit, A course in Number Theory and Cryptography, Springer –							
		Verlag, Ne	w York, 19	987					
Reference	Books	 I. Niven and H.S.uckermann, An Introduction to Theory of Numbers (Edition 3), Wiley Eastern Ltd, New Delhi 1976 D.M.Burton, Elementary Number Theory, Brown Publishers, Iowa, 1989 K. Isaland and M.Basan, A close is Introduction to Medam Neuroperstandard 							
		 K.Ireland and M.Rosen, A classic Introduction to Modern Number Theory, Springer – Verlag, 1972 N.Koblit, Algebraic Aspects of Cryptography, Springer- Verlag, 1998 							

LEARNING OUTCOMES:

- 1. Understand advanced number theory concepts.
- 2. Gain knowledge in Finite fields and quadratic residues and reciprocity
- 3. Learn encipher and decipher text messages and Public key cryptography.

Extra Disciplinary –II SUBJECT NAME: JAVA PROGRAMMING SUBJECT CODE: MFFBD

COURSE OBJECTIVES:

1.To introduce object oriented design techniques and problem solving using java

2. To provide the insight to programming language the fundamentals of Language

3.To impart the benefits of object oriented language

Title of the course		1.JAVA PROGRAMMING						
Category	Extra	Year	II	Credits	3	Course		
	disciplinary II	Semester	III	-		Code		
Pre-requisi	te	Knowledge in Prog	grammin	ng in C / C^{++}		1		
Course Ou	ıtline	UNIT – I : Overvie	ew of Ja	va Language: Ja	ava Tokei	ns – Java Statements.		
		Chapter 3 : Sectio	on 3.1 to	3.12				
		UNIT – II : Consta	nts – Va	ariables – Data	Types			
		Chapter 4 : Section	on 4.1 to	94.12				
		UNIT – III : Opera	tors - E	xpressions				
		Chapter 5 : Section 5.1 to 5.16						
		UNIT – IV : Decision making and Branching						
		Chapter 6 : Section 6.1 – 6.9						
		UNIT – V : Classes – Objects – Methods – Arrays – Strings						
		Chapter 8 : Section 8.1 to 8.19						
		Chapter 9 : Section 9.1 to 9.5						
Recommen	nded Text	E. Balaguruswamy, Programming with Java – A primer, Tata McGraw						
		Hill Publishing Company Limited, New Delhi, 1998						
Reference	Books	1. Mitchell Waite and Robert Lafore, Data Structure and						
		Algorithms in Java, Tech media (Indian Edition) New Delhi,						
		1999						
		2. Adam Drozdek, Data Structures and Algorithms in Java (Brown						
		/Cole) Vikas Publishing House, New Delhi 2001.						

LEARNING OUTCOMES:

Students will be able to

1.Use an integrated development environment to write ,compile, run,and test

- 2.Make relational operations in Java
- 3.Understand the communication process through the web

<u>Semester –IV</u>

SUBJECT NAME: COMPLEX ANALYSIS- II SUBJECT CODE: MFF4A

- 1. To study and Understand Weierstrass function and its applications.
- 2. To define and recognize the basic properties of the Riemann Zeta function .
- 3. To enable the students to understand the concepts of Riemann mapping Theorems, conformal mappings and harmonic functions

Title of the Course		COMPLEX ANALYSIS- II						
Paper Num	Paper Number		XII	Ι				
Category	Core	Year	II	Credits	4	Course		
		Semester	IV			Code		
Pre-requisi	te	Complex A	nalysis-I an	d Real Analy	sis			
Course Out	line	UNIT-I: Ri	emann Zeta	Function an	d NormalF	amalies :		
		Product development – Extension of $\zeta(s)$ to the whole plane – The zeros of						
				tinuity – No		compactness	s – Arzela's	
				alytic functio				
		-		to 4.4, Sect				
				ping Theore		nt and Proof	– Boundary	
				eflection Prir	1			
				polygons :B				
				ula – Mappin				
		Harmonic F Harmack's p		functions with	i mean value	property –		
		-	-	to 1.3 (Omit	Section14)		
				it section 2.4				
				tions : Simpl			ubly	
		periodic fun	ctions	1			2	
		Chapter 7 :	Sections 1.1	to 1.3, Section	ions 2.1 to 2.	.4		
		UNIT-IV :V	Veierstrass 7	Fheory : The	Weierstrass	℘-function –	The	
		functions $\zeta($	s) and $\sigma(s)$ -	- The differer	ntial equation	-The modu	lar equation	
			$\lambda(\tau)$ – The Conformal mapping by $\lambda(\tau)$.					
		-	Sections 3.1					
					ation :The Weiesrtrass Theory – Germs and ann surfaces – Analytic continuation along			
							U	
		Arcs – Homotopic curves – The Monodromy Theorem – Branch points. Chapter 8 : Sections 1.1 to 1.7						
Recommen	dod Torrt			to 1. 7 x Analysis, (3	rd Edition) M	Cacara II:11 I	De als	
Recomment	ueu Text		, New York,		Edition) M		SOOK	
Reference	ce Books			tion to Compl	lex Analysis.	Clarendon P	ress.Oxford.	
		2003.	, <i></i>				<i>c</i> 55,01101 a ,	
			y, Functions	of one comp	lex variable,	Springer Inte	ernational	
		Edition, 2		. 1	,			
				Analysis, Spi				
			, Notes on C	omplex functi	ion Theory, H	Hindustan Bo	ok Agency,	
		1998						

Students will be able to

- 1. <u>Use Riemann mapping theorem in applications</u>.
- **2.** Have a fundamental understanding of Elliptic functions.
- **3.** Have a good background for studying these more advanced topics.

SUBJECT NAME: DIFFERENTIAL GEOMETRY SUBJECT CODE: MFF4B

- 1. To get introduced to the concept of a regular parameterized, the concept of curvature of a space curve and signed curvature of a plane curve. the fundamental theorem for plane curves, the notion of Serret-Frenet frame for space curves and the involutes and evolutes of space curves with the help of examples.
- 2. To be able to compute the curvature and torsion of space curves, able to understand the fundamental theorem for space curves, get introduced to the concept of a parameterized surface with the help of examples, Understand the idea of orientable/non-orientable surfaces, get introduced to the idea of first fundamental form/metric of a surface.
- 3. To Understand the normal curvature of a surface, its connection with the first and second fundamental form and Euler's theorem, Understand the Weingarton Equations, mean curvature and Gaussian curvature, understand surfaces of revolution with constant negative and positive Gaussian curvature , prove Theorema Egregium of Gauss.

Title of the Course Paper Number		DIFFERENTIAL GEOMETRY							
			XIV						
Category	Core	Year	II	Credits	4	Course			
		Semester	IV			Code			
Pre-requisi	te	Linear Alg	gebra and	d Calculus					
Course Out	tline	Unit I - Cu	rves in tl	ne plane and in	space :				
		C	urves, par	ametrisation, ar	c length, l	evel curves, curvat	ure,		
		plane and s	plane and space curves.						
		Chapters 1 and 2.							
		Unit II - Surfaces in space :							
		S	Surface patches, smooth surfaces, tangents, normals, orientability,						
		examples of surfaces, lengths of curves on surfaces, the first fundamental							
		form, isometries, surface area							
		Chapter 4	- 4.1, 4.2,	4.3, 4.4, 4.7 an	d Chapte	r 5 - 5.1, 5.2, 5.4			
		Unit III - Curvature of surfaces:							
		The second fundamental form, Curvature of curves on a surface,							
		normal, prir	ncipal, Ga	ussian and mea	n curvatu	res, Gauss map. C	hapter 6 ·		
		6.1, 6.2, 6.3	and Cha	pter 7 - 7.1, 7.5	5,7.6				

	Unit IV - Geodesics : Geodesics, geodesic equations, geodesics as shortest pat geodesic coordinates. Chapter 8 - 8.1, 8.2, 8.4, 8.5						
	Unit V - Theorema Egregium of Gauss : Theorema Egregium, isometries of surfaces, Codazzi-Mainardi equations, compact surfaces of constant Gaussian curvature Chapter 10						
Recommended Text	A. Pressley, <i>Elementary Differential Geometry</i> , Springer-Indian Edition, 2004.						
Reference Books	 J.A. Thorpe, Elementary Topics in Differential Geometry, Springer- Indian edition. E.D. Bloch, A First Course in Geometric Topology and Differential Geometry, Birkhauser, 1997. M.P. do Carmo, Differential Geometry of Curves and Surfaces, Prentice-Hall, 1976. 						

Students will be able to

- 1. Calculate the curvature and torsion of a curve, Find the osculating surface and the osculating curve at any point of a given curve.
- 2. Calculate the first and the second fundamental forms of a surface,
- 3.Calculate the Gaussian curvature, the mean curvature, the curvature lines, the asymptotic lines, the geodesics of a surface.

SUBJECT NAME: FUNCTIONAL ANALYSIS SUBJECT CODE: MFF4C

- 1. To get an overview of normed spaces and familiarize on Banach space, Hilbert space, conjugate space
- 2. To understand the concepts of bounded linear operators and spectral theory.
- 3. To study Orthogonal complements, Orthonormal sets and conjugate space.

Title of the Course		FUNCTIONAL ANALYSIS						
Paper N	Number	XV						
Category	Core	Year	II Credits 4 Course					
		Semester	IV			Code		
Pre-requisi	te	Basic Anal	ysis, Topolo	gy and Line	ar Algebra	a		
Course Out	line	Unit I - Normed spaces, Continuity of linear maps, Hahn-Banach Theorems,						
		Banach Spaces.						
		Chapters II (omit sections 6.8, 7.11, 7.12, 8.4)						
		Unit II - Uniform boundedness principle, Closed Graph and Open Mapping						
		theorems, Bounded Inverse Theorem, Spectrum of a bounded operator.						
		Chapter III (omit sections 9.4 to 9.7, 11.2, 11.4, 11.5, 12.6, 12.7)						

	Unit III - Duals and Transposes, Weak and weak *convergence, Reflexivity						
	Chapter IV (omit sections 13.7, 13.8, 14, 15.5 to 15.7, 16.5 to 16.9)						
	Unit IV - Inner Product Spaces, Orthonormal sets, Best approximation,						
	Projection and Riesz Representaion theorems.						
	Chapter VI (omit sections 23.2, 23.4, 23.6, 24.7, 24.8)						
	Unit V - Bounded operators and adjoints, Normal, unitary and self adjoin						
	Operators, Spectrum and Numerical range, Compact selfadjoint						
	operators						
	Chapter VII (omit sections 26.4, 26.5 26.6, 27.4 to 27.7, 28.7, 28.8)						
Recommended Text	B.V. Limaye, Functional Analysis, New Age International, 1996.						
Reference Books	1. W.Rudin Functional Analysis, Tata McGraw-Hill Publishing Company, New Delhi, 1973						
	2. G.Bachman & L.Narici, Functional Analysis Academic Press, New York , 1966.						
	3. C. Goffman and G.Pedrick, First course in Functional Analysis, Prentice Hall of India, New Delhi, 1987						
	4. E. Kreyszig, Introductory Functional Analysis with Applications, John wiley & Sons, New York., 1978.						

Students will be able to

- 1. Familiarize with the concepts of normed linear spaces and operators on normed linear space.
- 2. Demonstrate an understanding of the concepts of Hilbert spaces and Banach spaces, and their role in mathematics.
- 3. Understand the concepts of linear operators, self adjoint, unitary operators, isometric isomorphism on Hilbert spaces ,Determinants ,the spectrum of an operator, Banach algebra .

SUBJECT NAME: FLUID DYNAMICS SUBJECT CODE: MFFAJ

Group D: Elective IV

COURSE OBJECTIVES:

1. To introduce fundamental aspects of fluid flow behaviour.

2. To learn to develop steady state fluid flow , apply Eulers and Bernoullis equation of motion .

3. To understand axis symmetric flow, stress components of fluidflow and Navier stokes equation of motion.

Title of th	ne Course	D1. FLUID DYNAMICS				
Category	Elective-	Year	II	Credits	3	Course
	IV	Semester	IV			Code
Pre-requisite Basic Differential Equations, Vector Calculus and Complex Anal			nd Complex Analysis			

Course Outline	UNIT-I : Kinematics of Fluids in motion. Real fluids and Ideal fluids-						
Course Outline	Velocity of a fluid at a point, Stream lines, path lines, steady and unsteady						
	flows- Velocity potential - The vorticity vector- Local and particle rates of changes - Equations of continuity - Worked examples - Acceleration of a						
	changes - Equations of continuity - Worked examples - Acceleration of a fluid - Conditions at a rigid boundary.						
	fluid - Conditions at a rigid boundary. Chapter 2. Sec 2.1 to 2.10.						
	UNIT-II: Equations of motion of a fluid : Pressure at a point in a fluid at pressure at a point in a moving fluid. Conditions at a hour damy of two						
	rest Pressure at a point in a moving fluid - Conditions at a boundary of two						
	inviscid immiscible fluids- Euler's equation of motion - Discussion of the						
	case of steady motion under conservative body forces.						
	Chapter 3. Sec 3.1 to 3.7						
	UNIT-III :Some three dimensional flows. Introduction- Sources, sinks and						
	doublets - Images in a rigid infinite plane - Axis symmetric flows - Stokes						
	stream function						
	Chapter 4 Sec 4.1, 4.2, 4.3, 4.5.						
	UNIT-IV : Some two dimensional flows : Meaning of two dimensional						
	flow - Use of Cylindrical polar coordinates - The stream function - The						
	complex potential for two dimensional , irrotational incompressible flow -						
	Complex velocity potentials for standard two dimensional flows - Some						
	worked examples - Two dimensional Image systems - The Milne Thompson						
	circle Theorem.						
	Chapter 5. Sec 5.1 to 5.8						
	UNIT-V Viscous flows: Stress components in a real fluid Relations						
	between Cartesian components of stress- Translational motion of fluid						
	elements - The rate of strain quadric and principle stresses - Some further						
	properties of the rate of strain quadric - Stress analysis in fluid motion -						
	Relation between stress and rate of strain- The coefficient of viscosity and						
	Laminar flow - The Navier - Stokes equations of motion of a Viscous						
	fluid.						
	Chapter 8. Sec 8.1 to 8.9						
Recommended Text	F. Chorlton, <i>Text Book of Fluid Dynamics</i> , CBS Publications. Delhi ,1985.						
Reference Books	1. R.W.Fox and A.T.McDonald. Introduction to Fluid Mechanics, Wiley,						
	1985.						
	2. E.Krause, Fluid Mechanics with Problems and Solutions, Springer, 2005.						
	3.B.S.Massey, J.W.Smith and A.J.W.Smith, Mechanics of Fluids,						
	Taylor and Francis, New York, 2005						
	4. P.Orlandi, Fluid Flow Phenomena, Kluwer, New Yor, 2002.						
	5. T.Petrila, Basics of Fluid Mechanics and Introduction to Computational Fluid Dynamics, Springer, berlin, 2004.						

- 1. Describe the physical properties of a fluid and calculate the pressure distribution for incompressible fluids.
- 2. Describe the principles of motion for fluids and the areas of velocity and acceleration.
- 3. Apply stokes stream function for axis symmetric flow and understand rate of stress and strain quadric.

Group E: Elective V

SUBJECT NAME: TENSOR ANALYSIS AND RELATIVITY SUBJECT CODE: MFFAM

COURSE OBJECTIVES:

1. To develop steady state mechanical energy balance equation for fluid flow systems.

2. To estimate pressure drop in fluid flow systems.

3. To determine performance characteristics of fluid machinery.

Title of the Course		E1.TENSOR ANALYSIS AND RELATIVITY						
Category	Elective -	Year	II	Credits	3	Course		
	V	Semester	IV			Code		
Pre-requisi	te	Vector Calo	culus and M	echanics		·		
Course Out	tline		0			rent orders -		
						on of coordin		
						Tensors of Se		
						– Algebra o		
						mmetric tens		
		-			1	tion – Quoti		
			1			Cross Product	of Vectors.	
				and I.8 and		Christoffel S	umbolo	
		and their pro		ius : Kieliläli	man space –	Christoffer S	ymbols	
		Chapter II		III.2				
		^			Covariant I	Differentiation	n of Tensors	
						c Differentiat		
		Chapter III						
		UNIT-IV :Special Theory of Relativity : Galilean Transformations –						
		Maxwell's equations – The ether Theory – The Principle of Relativity.						
		Relativistic Kinematics : Lorentz Transformation equations – Events and						
		simultaneity – Example – Einstein Train – Time dilation – Longitudinal						
						Proper dista		
		line - Example - twin paradox - addition of velocities - Relativistic Doppler					stic Doppler	
		effect.						
		Chapter 7 : Sections 7.1 and 7.2 UNIT-V : Relativistic Dynamics : Momentum – Energy – Momentum –						
		•••				gy – Mass and	•••	
		-			ple of equiva	lence – Lagra	ngian and	
		Hamiltonian			onstant accol	anation ava	mnla	
		Accelerated Systems : Rocket with constant acceleration – example – Rocket with constant thrust.					mpie –	
Chapter 7 : Sections 7.3 and 7.4								
Recommen	ded Text				enSengunta	Tensor Calcu	lus Narosa	
Recommended TextU.C. De, Absos Ali Shaikh and JoydeFor Units I,II and IIIPublishing House, New Delhi, 2004.					epsengapta,	i ensor cureu	140, 1 1 4105 4	
For Units I	V and V	D.Greenwoo	od, Classical	Dynamics, P	rentice Hall o	of India, New	Delhi,	
		1985.						

Reference Books	 J.L.Synge and A.Schild, Tensor Calculus, Toronto, 1949. A.S.Eddington. The Mathematical Theory of Relativitity,
	Cambridge University Press, 1930.
	3. P.G.Bergman, An Introduction to Theory of Relativity, Newyor,
	1942.
	4. C.E.Weatherburn, Riemannian Geometry and the Tensor Calculus,
	Cambridge, 1938.

- 1. Understand basic concepts of tensors, Christoffel symbols and problems
- 2. Understand tensor differentiation and Christoffel curvature Tensor.
- 3. Understand principle of equivalance and Accelerated system.

COURSE ASSESSMENT NORMS:

	Assessment of Marks	Maximum Marks
	Internal Assessment Marks – 10	
INTERNAL MARKS	Assignment - 5	25
	Seminar - 5	
	Attendance – 5	
EXTERNAL MARKS	University Examinations	75
TOTAL		100

J.Proder

R. South

Signature of Principal

Signature of HOD